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Abstract. The finite-temperature phase diagram of the Hubbard model in d = 3 is obtained from
renormalization-group analysis. It exhibits, around half filling, an antiferromagnetic phase and, between
30%–40% electron or hole doping from half filling, a new τ phase in which the electron hopping strength t
asymptotically becomes infinite under repeated rescalings. Next to the τ phase, a first-order phase bound-
ary with very narrow phase separation (less than 2% jump in electron density) occurs. At temperatures
above the τ phase, an incommensurate spin modulation phase is indicated. In d = 2, we find that the
Hubbard model has no phase transition at finite temperature.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 74.25.Dw Superconductivity phase
diagrams – 05.30.Fk Fermion systems and electron gas

The Hubbard model [1] is the bare-essentials realistic
model of electronic conduction and is defined by the
Hamiltonian

−βH = −t
∑
〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
− U

∑
i

ni↑ni↓ + µ
∑
i

ni, (1)

where c†iσ and ciσ are the electron creation and annihi-
lation operators with spin σ = ↑ or ↓ at site i of a cubic
lattice, 〈ij〉 indicates summation over all nearest-neighbor
pairs of sites, and

niσ = c†iσciσ and ni = ni↑ + ni↓ (2)

are the electron number operators. The terms in the
Hamiltonian of equation (1) are, respectively, the kinetic
energy term, the on-site repulsion (U > 0) term, and the
chemical potential term included in order to study the sys-
tem over its entire density range from zero to two electrons
per site.

Essentially no knowledge has existed even phenomeno-
logically on the phase diagram of the Hubbard model as a
function of (non-zero) temperature and (non-half-filling)
electron density. Previous renormalization-group calcula-
tions have concentrated on studying the Hubbard model
in lower dimensions, at zero-temperature, or at half-filling
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(i.e., constrained to the electron density of one electron
per site): The zero-temperature (ground-state) properties
were successfully obtained in d = 1, 2, 3 [2]. In d = 1 at
half filling, the thermodynamic properties were accurately
calculated for finite temperatures [3]. In d = 2 at half fill-
ing, it was found that no phase transition as a function of
temperature occurs [4,5]. This result was later extended
to other fillings in d = 2 [6]. In d = 3 at half filling, an
antiferromagnetic phase transition as a function of tem-
perature was obtained [5]. One calculation done in d = 3
at finite temperature and arbitrary chemical potential [6]
did not obtain the τ phase, the narrow phase separation,
or the frozen spin modulation phase reported below.

In this research, we obtain a phase diagram for the
Hubbard model in d = 3, for finite temperatures and
for the full range of electron density, from an approx-
imate renormalization-group calculation with flows in a
10-dimensional Hamiltonian space. This rich global phase
diagram, in the variables of temperature, electron den-
sity, and on-site repulsion, exhibits, at and around half-
filling, an antiferromagnetic phase completely due to elec-
tron hopping. This antiferromagnetic phase is unstable to
at most 10% hole or electron doping from half filling. At
30–40% electron or hole doping from half filling, a new
τ phase occurs with distinctive conduction property. In
the neighborhood of the τ phase, a phase separation so
narrow that the jump in electron density is less than 2%
occurs. At temperatures above the τ phase, an incommen-
surate frozen spin modulation phase is indicated. In d = 2,
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we find that no phase separation or other phase transi-
tion occurs at finite temperature in the Hubbard model.
This result agrees with previous renormalization-group
calculations [4–6] and with quantum Monte Carlo calcu-
lations [7]. This behavior of the Hubbard model is in con-
trast to the phase transition in d = 2 in the closely related,
but less realistic, tJ model of electronic conduction [8],
also seen in the application of our method to the tJ
model [9,10].

The renormalization-group transformation is formu-
lated [9,10] by first considering a d = 1 system. An ex-
act renormalization-group transformation can be formally
written,

〈u1u3u5... | e−β
′H′ | v1v3v5...〉 =∑

w2w4w6...

〈u1w2u3w4u5w6... | e−βH | v1w2v3w4v5w6...〉,

(3)

where u1, w2, v3, etc. represent the single-site states.
Primes indicate the renormalized system. The transfor-
mation given in equation (3) conserves the partition func-
tion, Z = Z ′, but cannot be implemented due to the non-
commutativity of the operators in the Hamiltonian. An
approximation is used:

Treven exp(−βH) = Treven

× exp

(
even∑
i

−βH(i− 1, i)− βH(i, i+ 1)

)

'
even∏
i

Trwi exp (−βH(i− 1, i)− βH(i, i+ 1))

=
even∏
i

exp (−β′H′(i− 1, i+ 1))

' exp

(
even∑
i

−β′H′(i− 1, i+ 1)

)
= exp(−β′H′), (4)

where Treven means a trace taken only over the even sites,
and

−βH(i, j) = −t
(
c†iσcjσ + c†jσciσ

)
− (U/2d)

∑
i

(ni↑ni↓ + nj↑nj↓)

+ (µ/2d)
∑
i

(ni + nj) . (5)

Thus, the approximation consists in neglecting the com-
mutation relations beyond segments of three consecutive
unrenormalized sites. This approximation is effected twice
(') in equation (4), in opposing directions, hopefully with
compensatory effect. The crux of the calculation is ex-
tracted from the third step in equation (4),

Trw2e−βH(1,2)−βH(2,3) = e−β
′H′(1,3) . (6)

When written in terms of three-site (on the left) and two-
site (on the right) matrix elements, this equation amounts
to contracting a 64 × 64 matrix into a 16 × 16 matrix.
This operation is facilitated by block diagonalization of
the matrices, using the conservations of particles, total
spin magnitude, total spin z-component, and parity, so
that the largest blocks are 4×4 and 2×2 for the unrenor-
malized and renormalized systems, respectively. Thus, a
renormalized Hamiltonian −β′H′ is extracted. The closed
form of −β′H′ is more general than equation (1), namely

−βH = −
∑
〈ij〉,σ

[t0hi−σhj−σ + t1 (ni−σhj−σ + hi−σnj−σ)

+t2ni−σnj−σ]
(
c†iσcjσ + c†jσciσ

)
− tx

∑
〈ij〉

(
c†i↑cj↑c

†
i↓cj↓ + c†j↑ci↑c

†
j↓ci↓

)
− U

∑
i

ni↑ni↓ + µ
∑
i

ni

+
∑
〈ij〉

[Jsi · sj+V2ninj+V3 (ni↑ni↓nj+ninj↑nj↓)

+V4ni↑ni↓nj↑nj↓] , (7)

where the hole operator is hiσ ≡ 1− niσ and the electron
spin operator at site i is

si =
∑
σ,σ′

c†iσsσσ′ciσ′ , (8)

where sσσ′ is the vector of Pauli spin matrices. The four
hopping terms in the flow Hamiltonian (Eq. (7)) corre-
spond to one electron hopping with or without the oppo-
site spin electron present at the initial and final sites (two
of these processes are related by hermitivity and therefore
have the same hopping strength t1) and to two electrons si-
multaneously hopping from one site to a neighboring site.
These four processes can be called vacancy hopping (t0),
pair breaking (t1), pair hopping (t2), and vacancy-pair in-
terchange (tx). For

t0 = t1 = t2 , tx = J = V2 = V3 = V4 = 0 , (9)

the flow Hamiltonian (Eq. (7)) reduces to the Hubbard
Hamiltonian (Eq. (1)). Thus, equations (9) are the initial
conditions of our renormalization-group flows. However, in
general, the hopping strengths renormalize differently and
the new interactions are generated under rescaling, so that
the renormalization-group flows are in the 10-dimensional,
K = (t0, t1, t2, tx, U, µ, J, V2, V3, V4), Hamiltonian space.

The transformation is implemented in d > 1 by
using the Migdal-Kadanoff procedure, so that K′ =
(bd−1/f)R(fK) where b = 2 is the length-rescaling factor,
the function R is the contraction process specified in the
previous paragraph, and f is an arbitrary bond-moving
factor, set to yield the correct transition temperature of
the Ising model (f = 1.2279 and 1.4024 in d = 3 and 2).
This renormalization-group transformation yields known
information about quantum systems, such as, in d = 1,
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Fig. 1. Calculated phase diagram of the d = 3 Hubbard model for U/t = 20. First- and second-order phase boundaries are
shown with dotted and full curves, respectively. The right panel shows the full phase diagram in temperature versus chemical
potential, which is symmetric about µ/U = 0.5. The middle panel shows a detailed view. The left panel shows the same phase
diagram as the middle panel, but in temperature versus electron density. Antiferromagnetic [a], disordered [D], and τ phases are
seen. In the τ phases, the hopping strength t0 or t2 renormalizes to infinity, for hole or electron doping respectively. Above the
τ phase, a sequence of antiferromagnetic and disordered phases (Fig. 1 (center panel)) is interpreted as an incommensurate spin
modulation phase (Fig. 1 (left panel)). As seen in (left), the first-order phase boundary has a very narrow coexistence region.

the absence finite-temperature phase transitions; in d = 2,
a conventional phase transition for the Ising model, a
Kosterlitz-Thouless transition for the XY model [11,12],
no phase transition for the Heisenberg model; in d = 3,
ferromagnetic and antiferromagnetic phase transitions for
the Heisenberg model, the antiferromagnetic transition oc-
curring at a 22% higher temperature than the ferromag-
netic transition, a purely quantum mechanical effect [13].
The 10-dimensional renormalization-group flows also con-
serve the particle-hole symmetry, given by the map:

t0 = t2 , t1 = t1 , t2 = t0 , tx = tx , J = J,

µ =−µ+U−4dV2−6dV3−2dV4, U =U−4dV3−2dV4,

V 2 = V2 + 2V3 + V4 , V 3 = −V3 − V4 , V 4 = V4. (10)

The global analysis of the renormalization-group
flows yields the phase diagram of the system. Within
renormalization-group theory, each thermodynamic
phase is identified as the basin of attraction, within
renormalization-group flows, of a completely stable
characteristic fixed point (sink). Analysis of the (at least
singly) unstable fixed points attracting the points in-
between the thermodynamic phases yields the properties
of the first- or second-order phase transitions. For any
given temperature and chemical potential, the electron
density can be calculated by summation along the
entire renormalization-group trajectory that originates
at the given temperature and chemical potential [9].
Thus, once a phase diagram is obtained in temperature
versus chemical potential, it can also be obtained in
temperature versus electron density simply by calculating
the electron density at each phase boundary point of the
temperature and chemical potential phase diagram. This
was done in our work and sets of corresponding phase
diagrams are exhibited below. We have thus obtained
the global phase diagram of Hubbard model, presented
here in Figures 1–3, where first- and second-order phase
boundaries are respectively shown by dotted and full
curves. The particle-hole symmetry (Eq. (10)) dictates
that the Hubbard model (Eq. (1)) phase diagrams be

symmetric about µ/U = 0.5, which is seen in all of our
results.

Figures 1 are for U/t = 20. In Figure 1, the right
panel shows the full phase diagram in temperature versus
chemical potential. The middle panel shows the details
in temperature versus chemical potential. The left panel
shows the same phase diagram as the middle panel, but
in temperature versus electron density, which is calcu-
lated as explained above. It is seen that an antiferro-
magnetic phase (marked as a in the figures) occurs at
and around half-filling, purely due to electron hopping,
since the Hubbard Hamiltonian (Eq. (1)) does not con-
tain an explicit antiferromagnetic coupling. In fact, we
traced the occurrence of this antiferromagnetic phase to
the non-zero value of the pair-breaking strength t1. This
antiferromagnetic phase is unstable to at most 10% hole or
electron doping from half filling. Between 30 to 40% hole
or electron doping, a τ phase occurs in which the vacancy
hopping strength t0 or the pair hopping strength t2 (see
Eq. (7)), respectively, renormalizes to infinity under re-
peated renormalization-group transformations. Thus, for
hole doping, under repeated renormalization-group trans-
formations, t0 → ∞, J/t0 = 2, V2/t0 = 3/2, µ/t0 =
6, ti6=0 = 0, U → ∞, ti/U = 0, Vi/U = 0. Symmet-
rically, for electron doping, the overbarred variables of
equation (10) have this behavior. In all other regions
of the phase diagram, all hopping strengths renormal-
ize to zero under repeated renormalization-group trans-
formations. Near the τ phase, a first-order phase tran-
sition (dotted curves) occurs, seen as a single curve in
Figure 1 (center) in terms of electron chemical potential
and opening up into a coexistence region in Figure 1 (left)
in terms of electron density. The latter shows the distinc-
tive feature of this first-order transition, namely that it
involves a very narrow phase separation, e.g., a disconti-
nuity in electron density of less than 2%. This is similar
to what is seen experimentally [14] in lanthanide com-
pounds, which are physical realizations of an electronic
conduction system. At temperatures above the τ phase,
a sequence of antiferromagnetic and disordered phases
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Fig. 2. Calculated phase diagram of the d = 3 Hubbard model for U/t = 4.44.

Fig. 3. Calculated phase diagram of the d = 3 Hubbard model for U/t = 0.8.

is seen, at many temperature scales (Figs. 1, 2 (center)).
We interpret this as the presence of an incommensurate
spin modulation phase, with a temperature- and (less
strongly, by the alignment of the sequencing) density-
dependent periodicity. Our renormalization-group trans-
formation, with a commensurate rescaling factor and a
built-in approximation, acts as a spurious substrate po-
tential which, at small incommensuration, registers the in-
commensurate phase and, at large incommensuration, dis-
orders it. This is also apparent in incommensurate phases
of spin systems, as seen for example in Figure 4 of refer-
ence [15]. The incommensurate phase that we thus deduce
is indicated in Figures 1, 2 (left). Finally, in the disordered
(D) phase, all intersite couplings and hopping strengths
renormalize to zero under repeated renormalization-group
transformations. The features described above were also
seen in the simpler, less realistic, tJ model [9,10].

As U/t is decreased, the first-order phase boundary
moves with respect to the τ phase. It is seen that, for
U/t = 4.44 (Figs. 2), it actually abuts the boundary of
the τ phase and, for U/t = 0.8 (Figs. 3), it is on the other
side of the τ phase.

We have thus calculated a finite-temperature phase di-
agram for the d = 3 Hubbard model, which has yielded
rich phase transition phenomena. We have also repeated
the same calculation for d = 2. We find that, at finite-
temperature, no phase separation or other phase transi-
tion occurs for the Hubbard model (Eq. (1)) in d = 2. This
result agrees with previous renormalization-group calcula-
tions [4–6] and with quantum Monte Carlo calculations [7].
By contrast, our renormalization-group method has also
been applied to the tJ model, where a phase separation

bounded by a finite temperature critical line is found for
t/J ≤ 0.25 [9,10].
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